LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimating power capability of aged lithium-ion batteries in presence of communication delays

Photo from wikipedia

Abstract Efficient control of electrified powertrains requires accurate estimation of the power capability of the battery for the next few seconds into the future. When implemented in a vehicle, the… Click to show full abstract

Abstract Efficient control of electrified powertrains requires accurate estimation of the power capability of the battery for the next few seconds into the future. When implemented in a vehicle, the power estimation is part of a control loop that may contain several networked controllers which introduces time delays that may jeopardize stability. In this article, we present and evaluate an adaptive power estimation method that robustly can handle uncertain health status and time delays. A theoretical analysis shows that stability of the closed loop system can be lost if the resistance of the model is under-estimated. Stability can, however, be restored by filtering the estimated power at the expense of slightly reduced bandwidth of the signal. The adaptive algorithm is experimentally validated in lab tests using an aged lithium-ion cell subject to a high power load profile in temperatures from −20 to +25 °C. The upper voltage limit was set to 4.15 V and the lower voltage limit to 2.6 V, where significant non-linearities are occurring and the validity of the model is limited. After an initial transient when the model parameters are adapted, the prediction accuracy is within ± 2 % of the actually available power.

Keywords: lithium ion; power capability; aged lithium; power

Journal Title: Journal of Power Sources
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.