Abstract In this work, the aluminum-air battery performance is improved by adding nonionic surfactant (nonoxynol-9) to battery electrolyte (4.0 M NaOH). The efficiency of nonoxynol-9 is determined using hydrogen gas evolution… Click to show full abstract
Abstract In this work, the aluminum-air battery performance is improved by adding nonionic surfactant (nonoxynol-9) to battery electrolyte (4.0 M NaOH). The efficiency of nonoxynol-9 is determined using hydrogen gas evolution and electrochemical measurements. The surface analysis is explored using scan electron microscope and energy dispersive X-ray spectroscopy. Battery performance is investigated at 20 mA cm−2. The results show that the battery performance is significantly improved by adding nonoxynol-9. This is due to the low corrosion rate of aluminum in 4.0 NaOH solution resulted from physical adsorption of nonoxynol-9 on aluminum surface. The surfactant suppresses the hydrogen gas evolution and increases the anode utilization and capacity density. The maximum inhibition efficiencies of nonoxynol-9 from hydrogen gas evolution and electrochemical measurements are 85.6% and 92.8%, respectively at 2.0 mM. Nonoxynol-9 behaves as a cathodic-type inhibitor and its adsorption complies with Freundlich type isotherm. The adsorption of surfactant on the aluminum surface is emphasized by surface analysis.
               
Click one of the above tabs to view related content.