LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Urea-assistant ball-milled CF as electrode material for primary lithium battery with improved energy density and power density

Photo from wikipedia

Abstract To improve the electrochemical performance of CFx for lithium primary batteries, a ball milling treatment of CFx and urea with various mass ratios is carried out in this paper.… Click to show full abstract

Abstract To improve the electrochemical performance of CFx for lithium primary batteries, a ball milling treatment of CFx and urea with various mass ratios is carried out in this paper. It is shows that the weight ratio of urea/CFx significantly affects the electrochemical performance of the ball-milled CFx. Electrochemical tests show that the modified CFx material exhibits excellent electrochemical performance with much enhanced rate capacity, improved discharge platform, and lowered initial potential delay compared with the untreated CFx. In detail, when the weight ratio of urea/CFx is 5, the material delivers a discharge capacity of 550.6 mAh g−1 with a high power density of 10309 W kg−1 (at 5000 mA g−1 and 25 °C) and exhibits an excellent electrochemical stability at low temperature of 5 °C (power density up to 5922.5 W kg−1 at 3000 mA g−1). The outstanding electrochemical performance is mainly due to the synergistic effect of enlarged interlayer distance, decreased particle size, and increased surface area, which resulting in improved the electrochemical reaction activity, decreased reaction resistance, and facilitated lithium ions diffusion.

Keywords: cfx; electrochemical performance; power density; density; power; material

Journal Title: Journal of Power Sources
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.