LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Iron doped manganese cobaltite spinel coatings produced by electrophoretic co-deposition on interconnects for solid oxide cells: Microstructural and electrical characterization

Photo from wikipedia

Abstract We report a systematic microstructural and electrical characterization of iron doped Mn–Co spinel coatings processed by electrophoretic co-deposition of Mn1.5Co1.5O4 and Fe2O3 powders on Crofer 22 APU and AISI… Click to show full abstract

Abstract We report a systematic microstructural and electrical characterization of iron doped Mn–Co spinel coatings processed by electrophoretic co-deposition of Mn1.5Co1.5O4 and Fe2O3 powders on Crofer 22 APU and AISI 441 steel substrates. Iron addition to Mn–Co spinel coating leads to a reduction of the area specific resistance on both substrates, after 3200 h at 750 °C. The Fe doped Mn–Co coating both leads to a thinner oxide scale and reduces the sub scale oxidation for the Crofer 22 APU substrate. Fe doped Mn–Co on AISI 441 shows both a thicker oxide scale and low area specific resistance values, likely due to a doping effect of the oxide scale by minor alloying elements. The different mechanisms by which iron doping of Mn–Co spinels can influence elemental interdiffusion at the steel-oxide scale-coating interfaces and relative contributions to the overall area specific resistance are evaluated by means of advanced electron microscopy. The promising results are further confirmed in a cell test, where the Fe doped MnCo coated interconnect does not induce any degradation of the oxygen electrode, proving its efficiency.

Keywords: microstructural electrical; electrical characterization; electrophoretic deposition; iron; spinel coatings; iron doped

Journal Title: Journal of Power Sources
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.