LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ceramic synthesis of disordered lithium rich oxyfluoride materials

Photo from wikipedia

Abstract Disordered lithium-rich transition metal oxyfluorides with a general formula Li1+xMO2Fx (M being a transition metal) are gaining more attention due to their high specific capacity which can be delivered… Click to show full abstract

Abstract Disordered lithium-rich transition metal oxyfluorides with a general formula Li1+xMO2Fx (M being a transition metal) are gaining more attention due to their high specific capacity which can be delivered from the face-centered cubic (fcc) structure. The most common synthesis procedure involves use of mechanosynthesis. In this work, ceramic synthesis of lithium rich iron oxyfluoride and lithium rich titanium oxyfluoride are reported. Two ceramic synthesis routes are developed each leading to the different level of doping with Li and F and different levels of cationic disorder in the structure. Three different Li1+xMO2Fx samples (x = 0.25, 0.3 and 1) are compared with a sample prepared by mechanochemical synthesis and non-doped LiFeO2 with fcc structure. The obtained lithium rich iron oxyfluoride are characterized by use of Mossbauer spectroscopy, X-ray absorption spectroscopy, NMR and TEM. Successful incorporation of Li and F have been confirmed and specific capacity that can be obtained from the samples is in the correlation with the level of disorder introduced with doping, nevertheless oxidation state of iron in all samples is very similar. Conclusions obtained from lithium rich iron oxyfluoride are validated by lithium rich titanium oxyfluoride.

Keywords: lithium rich; ceramic synthesis; disordered lithium; lithium; spectroscopy

Journal Title: Journal of Power Sources
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.