LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fault diagnosis and abnormality detection of lithium-ion battery packs based on statistical distribution

Photo from wikipedia

Abstract Lithium-ion battery packs are widely deployed as power sources in transportation electrification solutions. To ensure safe and reliable operation of battery packs, it is of critical importance to monitor… Click to show full abstract

Abstract Lithium-ion battery packs are widely deployed as power sources in transportation electrification solutions. To ensure safe and reliable operation of battery packs, it is of critical importance to monitor operation status and diagnose the running faults in a timely manner. This study investigates a novel fault diagnosis and abnormality detection method for battery packs of electric scooters based on statistical distribution of operation data that are stored in the cloud monitoring platform. According to the battery current and scooter speed, the operation states of electric scooters are clarified, and the diagnosis coefficient is determined based on the Gaussian distribution to highlight the parameter variation in each state. On this basis, the K-means clustering algorithm, the Z-score method and 3σ screening approach are exploited to detect and locate the abnormal cells. By analyzing the abnormalities hidden beneath the external measurement and calculating the fault frequency of each cell in pack, the proposed algorithm can identify the faulty type and locate the faulty cell in a timely manner. Experimental results validate that the proposed method can accurately diagnose faults and monitor the status of battery packs. This theoretical study with practical implications shows the promising research direction of combining data mining technologies with machine learning methods for fault diagnosis and safety management of complex dynamical systems.

Keywords: battery packs; fault diagnosis; battery; distribution

Journal Title: Journal of Power Sources
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.