LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An innovative approach to recover anode from spent lithium-ion battery

Photo from archive.org

Abstract With the environmental pollution and shortage of resources, the recycling and reusing of spent lithium-ion batteries become crucial. However, the complexity of recycling methods, associated with high cost, makes… Click to show full abstract

Abstract With the environmental pollution and shortage of resources, the recycling and reusing of spent lithium-ion batteries become crucial. However, the complexity of recycling methods, associated with high cost, makes their recovery difficult. Herein, an effective and clean process to recycle anode materials from lithium-ion batteries and reuse graphite is proposed in this work. The graphite and copper foil of the anode are separated by electrolysis method, and the effects of parameters (voltages, inter-electrode distance, and electrolyte concentration) on the electrolysis process are investigated. The copper foil can be directly reused without further treatment, Cu2+ and Li+ in the electrolyte can be recovered by precipitation method. The purity of recovered graphite is about 95%, and the graphite can be reused to prepare the anode materials for lithium-ion batteries that exhibit excellent cycling stability and rate capability. The first discharge and charge specific capacities at a rate of 0.1 C are 427.81 mA h g−1 and 350.47 mA h g−1, respectively. The coulombic efficiency after the second cycle is observed to be about 98%.

Keywords: spent lithium; ion; ion batteries; innovative approach; lithium ion

Journal Title: Journal of Power Sources
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.