LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrochemical gas separation and inerting system

Photo from wikipedia

Abstract Following the TWA 800 flight disaster in 1996 which was attributed to an explosion in the fuel tank, inerting of the ullage (air volume above the fuel in the… Click to show full abstract

Abstract Following the TWA 800 flight disaster in 1996 which was attributed to an explosion in the fuel tank, inerting of the ullage (air volume above the fuel in the tank) has gained prominence. Fuel tank inerting is the process of reducing the flammability of the ullage by supplying it with an inert gas like nitrogen. Current inerting techniques are expensive, consume large amounts of energy, and fail prematurely. Here, we propose a novel in-flight electrochemical gas separation and inerting system (EGSIS) to produce and supply nitrogen-enriched air (NEA). EGSIS combines a polymer electrolyte membrane (PEM) fuel cell cathode with a PEM electrolyzer anode to generate humidified NEA as the cathode output which can be dehumidified and supplied directly to the fuel tank. The required rate of NEA varies during a typical flight and a major advantage of EGSIS is that the rate of NEA generation can be conveniently controlled by varying the voltage applied to the system. Here, we report on the performance of a single-cell EGSIS apparatus and evaluate its suitability for aircraft fuel tank inerting.

Keywords: electrochemical gas; fuel; system; fuel tank

Journal Title: Journal of Power Sources
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.