To explore the molecular mechanism of growth differences between fall dormant (FD) and non-FD alfalfa, we conducted iTRAQ-based quantitative proteomics on terminal buds of Maverick (FD) and Cuf101 (non-FD) cultivars,… Click to show full abstract
To explore the molecular mechanism of growth differences between fall dormant (FD) and non-FD alfalfa, we conducted iTRAQ-based quantitative proteomics on terminal buds of Maverick (FD) and Cuf101 (non-FD) cultivars, identified differential abundance protein species (DAPS) and verified expression profiling of certain corresponding mRNA by qRT-PCR. A total of 3872 protein species were annotated. Of the 90 DAPS, 56 and 34 were respectively up- and down-accumulated in Maverick, compared to Cuf101. They were grouped into 35 functional categories and enriched in seven pathways. Of which, auxin polar transport was up-regulated, while phenylpropanoid biosynthesis, pyruvate metabolism and transportation, vitamin B1 synthesis process and flavonoid biosynthesis were down-regulated in Maverick, comparing with Cuf101. In Maverick, mRNA abundances of l-asparaginase, chalcone and stilbene synthase family protein, cinnamyl alcohol dehydrogenase-like protein, thiazole biosynthetic enzyme, pyruvate dehydrogenase E1 beta subunit, and aldo/keto reductase family oxidoreductase were significantly lower at FD than at other stages, and lower than in Cuf101. We also observed opposite mRNA profiles of thiazole biosynthetic enzyme, chalcone and stilbene synthase family protein, pyruvate dehydrogenase E1 beta subunit in both cultivars from summer to autumn. Our results suggest that these DAPS could play important roles in growth difference between FD and non-FD alfalfa. BIOLOGICAL SIGNIFICANCE Up to now, as far as we know, currently the proteins related with the growth differences between FD and non-FD alfalfa cultivars in autumn have not yet been identified in terminal buds. This study identified the protein species expressed in alfalfa terminal buds, selected differentially abundant protein species in terminal buds between Maverick (FD) and Cuf101 (non-FD) cultivars in autumn and identified the important protein species participated in the growth differences. This study lays a foundation for further investigation of the molecular mechanism of the growth differences between FD and non-FD alfalfa and the cultivation of advanced alfalfa cultivars.
               
Click one of the above tabs to view related content.