LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Eu3+-doped BaLiZn3(BO3)3: A novel red-emitting phosphor for blue chips excited white LEDs

Photo by mymind from unsplash

Abstract A series of novel red-emitting BaLiZn3(BO3)3:Eu3+ phosphors was synthesized through the high temperature solid state reaction method. The phase composition, crystal structure, morphology and photoluminescence property of the BaLiZn3(BO3)3:Eu3+… Click to show full abstract

Abstract A series of novel red-emitting BaLiZn3(BO3)3:Eu3+ phosphors was synthesized through the high temperature solid state reaction method. The phase composition, crystal structure, morphology and photoluminescence property of the BaLiZn3(BO3)3:Eu3+ samples are systematically investigated. The phosphor can be efficiently excited by the near ultraviolet light (NUV) of 396 nm and blue light of 466 nm, and give out red light emission at 618 nm corresponding to the electric dipole transition (5D0→7F2). The optimal doping concentration of Eu3+ ions in BaLiZn3(BO3)3 is determined to be about 3 mol%, and the concentration-quenching phenomenon arise from the electric dipole–dipole interaction. The temperature dependent luminescence behavior of BaLiZn3(BO3)3:0.03Eu3+ phosphor exhibits its good thermal stability, and the activation energy for thermal quenching characteristics is calculated to be 0.1844 eV. The decay lifetime of the BaLiZn3(BO3)3:0.03Eu3+ is measured to be 1.88 ms. These results suggest that the BaLiZn3(BO3)3:Eu3+ phosphors have the potential application as a red component in white light emitting diodes (WLEDs) with NUV or blue chips.

Keywords: balizn3 bo3; novel red; bo3; red emitting; phosphor; eu3

Journal Title: Journal of Rare Earths
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.