LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Axisymmetric alternating direction explicit scheme for efficient coupled simulation of hydro-mechanical interaction in geotechnical engineering—Application to circular footing and deep tunnel in saturated ground

Photo by helloimnik from unsplash

Abstract Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical (H-M) interaction of fluid flow and deformation induced by structures built above and under… Click to show full abstract

Abstract Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical (H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit (ADE) scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in non-uniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourth-order finite difference (FD) approximation to the spatial derivatives of the axisymmetric fluid–diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps, giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua (FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%–50% that of FLAC's basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%–1.8%.

Keywords: circular footing; geotechnical engineering; alternating direction; saturated ground; scheme; ade scheme

Journal Title: Journal of rock mechanics and geotechnical engineering
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.