LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fracture analysis and mechanical properties of three phased glass/epoxy laminates reinforced with multiwalled carbon nanotubes

Photo from wikipedia

Abstract Herein, we report the use of Multi Wall Carbon Nano Tubes (MWCNTs) as nano-compatibilizers based on their astonishing mechanical properties and ease of processing. To fabricate laminate samples, pure… Click to show full abstract

Abstract Herein, we report the use of Multi Wall Carbon Nano Tubes (MWCNTs) as nano-compatibilizers based on their astonishing mechanical properties and ease of processing. To fabricate laminate samples, pure MWCNTs were homogeneously dispersed in the fiber-reinforced plastic (FRP) composite with 0, 0.5, 1 and 1.5 wt. % loading. The laminates were prepared with eight plies (4.0 ± 0.1 mm thickness) using the hand layup technique assisted by the compression moulding method. It was found that the tensile, compressive and inter-laminar shear strength (ILSS) increase by 103.81%, 139.78% and 36.06%, respectively corresponding to 1 wt. % loading of MWCNTs as compared to neat GFRP specimen. However, a rapid decrease in strength beyond 1 wt. % loading of MWCNTs has been noted. Interestingly, the maximum of the tensile strength was higher than that of the compressive strength, and the maximum of the tensile modulus was larger than that of the compressive modulus in the case of 1 wt. % loading of MWCNTs. It was observed that after a certain loading, the mechanical properties of such laminates can only reach the best value with an optimum loading of MWCNTs. In addition, the micromechanical failure modes and effect of MWCNTs loading on internal morphologies of the composites were also intensively explored with the help of Field Emission Scanning Electron Microscopic (FESEM) analysis.

Keywords: mechanical properties; strength; loading mwcnts; carbon; fracture analysis

Journal Title: Journal of Science: Advanced Materials and Devices
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.