LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Applied electric field analysis and numerical investigations of the continuous cell separation in a dielectrophoresis-based microfluidic channel

Photo from archive.org

Abstract Dielectrophoresis (DEP) is known as an attractive and frugal technique to manipulate biological particles in microfluidics. This study presents the advanced solution strategy of a DEP-based microfluidic channel for… Click to show full abstract

Abstract Dielectrophoresis (DEP) is known as an attractive and frugal technique to manipulate biological particles in microfluidics. This study presents the advanced solution strategy of a DEP-based microfluidic channel for focusing and separating cancerous cells in continuous flow. Theoretical calculations were carried out to define the favorable parameters in the electric field operation of the microchip. A simulation model was also used to explore the performance of the design in the isolation of circulating tumor cells (CTCs). It revealed that the optimal conditions of the device are suitable to effectively separate CTCs from red blood cells (RBCs) within the channel structure, with a high flow rate of 1.5 μL/min, and an electric amplitude as low as 10 Vpp, at the frequency of 1 kHz. The proposed method has shown potential as a simple, easy-to-operate, and low-cost approach enable to enhance the diagnosis systems for cancer detection at early stages.

Keywords: applied electric; dielectrophoresis; based microfluidic; electric field; microfluidic channel

Journal Title: Journal of Science: Advanced Materials and Devices
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.