LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Field evaluation of a random forest activity classifier for wrist-worn accelerometer data.

Photo from wikipedia

OBJECTIVES Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity… Click to show full abstract

OBJECTIVES Wrist-worn accelerometers are convenient to wear and associated with greater wear-time compliance. Previous work has generally relied on choreographed activity trials to train and test classification models. However, validity in free-living contexts is starting to emerge. Study aims were: (1) train and test a random forest activity classifier for wrist accelerometer data; and (2) determine if models trained on laboratory data perform well under free-living conditions. DESIGN Twenty-one participants (mean age=27.6±6.2) completed seven lab-based activity trials and a 24h free-living trial (N=16). METHODS Participants wore a GENEActiv monitor on the non-dominant wrist. Classification models recognising four activity classes (sedentary, stationary+, walking, and running) were trained using time and frequency domain features extracted from 10-s non-overlapping windows. Model performance was evaluated using leave-one-out-cross-validation. Models were implemented using the randomForest package within R. Classifier accuracy during the 24h free living trial was evaluated by calculating agreement with concurrently worn activPAL monitors. RESULTS Overall classification accuracy for the random forest algorithm was 92.7%. Recognition accuracy for sedentary, stationary+, walking, and running was 80.1%, 95.7%, 91.7%, and 93.7%, respectively for the laboratory protocol. Agreement with the activPAL data (stepping vs. non-stepping) during the 24h free-living trial was excellent and, on average, exceeded 90%. The ICC for stepping time was 0.92 (95% CI=0.75-0.97). However, sensitivity and positive predictive values were modest. Mean bias was 10.3min/d (95% LOA=-46.0 to 25.4min/d). CONCLUSIONS The random forest classifier for wrist accelerometer data yielded accurate group-level predictions under controlled conditions, but was less accurate at identifying stepping verse non-stepping behaviour in free living conditions Future studies should conduct more rigorous field-based evaluations using observation as a criterion measure.

Keywords: classifier wrist; free living; random forest; activity; accelerometer data

Journal Title: Journal of science and medicine in sport
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.