LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Energetically optimal stride frequency is maintained with fatigue in trained ultramarathon runners.

Photo from wikipedia

OBJECTIVES At a given running speed, humans naturally endeavor to achieve an optimal stride frequency that minimizes metabolic cost. Research has suggested that runners select this near optimal stride frequency… Click to show full abstract

OBJECTIVES At a given running speed, humans naturally endeavor to achieve an optimal stride frequency that minimizes metabolic cost. Research has suggested that runners select this near optimal stride frequency in some process of self-optimization even during fatiguing tasks up to 1-h of high-intensity running. Here, we studied whether runners demonstrate a similar self-optimizing capability after an ultramarathon of 6 h. DESIGN Controlled pre-post study. METHOD We collected temporal stride kinematics and metabolic data in nine (experimental group) male runners before and after 6 h of running and in six (control group) male ultramarathon runners who did not run, but stayed awake and performed normal, daily physical activities avoiding strenuous exercises over the 6-h period. For each participant, preferred and optimal stride frequencies were measured, where stride frequency was systematically varied above and below PSF (±4% and ±8%). RESULTS Preferred and optimal stride frequencies across time and group showed no significant differences (p ≥ 0.276). Furthermore, neither the overall relationship between metabolic cost and stride frequency, nor the energetically optimal stride frequency changed substantially after several hours of running. CONCLUSIONS Similar dynamics of stride frequency adjustments in the experimental group occurred as those found in a non-fatigued state. This suggests that after an ultramarathon of 6 h, runners were still able to optimize their gait, and automatically adjust it in order to converge on the energetically optimal gait.

Keywords: energetically optimal; optimal stride; frequency; group; ultramarathon runners; stride frequency

Journal Title: Journal of science and medicine in sport
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.