LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparison of dye (oxazine and thiazine) materials as a photosensitizer for use in photogalvanic cells based on molecular interaction with sodium dodecyl sulphate by spectral study

Photo by nci from unsplash

Abstract The photochemistry of dye is playing a significant role for understanding the mechanism of electron transfer reactions in photoelectrochemical devices such as photogalvanic cells, DSSC, semiconductor photo-catalysis, photoconductors, etc.… Click to show full abstract

Abstract The photochemistry of dye is playing a significant role for understanding the mechanism of electron transfer reactions in photoelectrochemical devices such as photogalvanic cells, DSSC, semiconductor photo-catalysis, photoconductors, etc. Oxazines (Brilliant Cresyl Blue and Nile Blue O) and thiazines (Azur A, Azur B, Azur C, Methylene Blue and Toluidine Blue O) dyes have been used widely as a photosensitizer with and without surfactants in the photogalvanic cells for solar power conversion and storage. Since, the stability and solubility of photosensitizers (dyes) are increased in the presence of surfactant and these properties lead to enhance the electrical output of the photogalvanic cells. Therefore, here we have studied the extent of interaction of different dyes with sodium dodecyl sulphate (SDS), find out the order of stability of dye–SDS on the basis of magnitudes of shifting in λ max of dye monomer and try to correlate order of dye–SDS interaction with already reported electrical output data of photogalvanic cells. Brilliant Cresyl Blue, Nile Blue O, Azur A and TB O have shown red shifting while Azur B, Azur C and MB have shown blue shifting in their λ max value with SDS, which indicates formation of dye–surfactant complex. But, the extent of formation of complex for different dyes with SDS was different due to change in their alkyl groups. Dyes with red shifting have greater stability in excited state as well as higher electrical output data of the cell than dye with blue shifting. On the basis of both red and blue shifting, order of stability of dyes–SDS complex was found as: Brilliant Cresyl Blue > Toluidine Blue O > Azur A > Nile Blue > Azur B > Methylene Blue > Azur C. The order of electrical output values of these dyes in photogalvanic cells have also been supported by literature data in the presence of SDS. Hence, the dye–surfactant complex which would have greater stability in excited state might be more useful for improvement of conversion efficiency and storage capacity of photogalvanic cells in the future.

Keywords: sodium dodecyl; photogalvanic cells; interaction; electrical output; stability; dye

Journal Title: Journal of Saudi Chemical Society
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.