LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, characterization of Uranyl(VI), Th(IV), Zr(IV) mixed-ligand complexes with S-methyl-2-(4-methoxybenzylidine)dithiocarbazate and N-donor co-ligand, and their evaluation as antimicrobial agent

Photo by dronepilot from unsplash

Abstract Schiff base, S-methyl-2-(4-methoxybenzylidine) dithiocarbazate as a primary ligand (HL1), quinoline (L2) as a co-ligand, and hydrated metal salts have been reacted in ethanol in 1:2:1 molar ratio to produce… Click to show full abstract

Abstract Schiff base, S-methyl-2-(4-methoxybenzylidine) dithiocarbazate as a primary ligand (HL1), quinoline (L2) as a co-ligand, and hydrated metal salts have been reacted in ethanol in 1:2:1 molar ratio to produce mixed-ligand complexes of the type, [M(L1)(L2)].NO3 [M = Uranyl(VI), Th(VI), Zr(IV)], The isolated products have been structurally investigated by elemental analyses, 1H NMR, IR and UV-Vis studies. The electronic studies shows octahedral geometry for all the studied complexes, whereas the molar conductance data suggest an ionic nature. Density functional computation (DFT) studies are also carried out in order to determine the bonding inside the structure of the complexes. The studied mixed-ligand complexes showed moderate antibacterial activity when evaluated against four pathogenic bacteria: Shigella dysenteriae, Bacillus subtilis, Agrobacterium tumefaciens, and Escherichia coli. In addition, molecular docking analysis for all the complexes, using the CLC Drug Discovery Workbench software, showed that they virtually docked on S. dysenteriae, B. subtilis, A. tumefaciens, and E. coli.

Keywords: methoxybenzylidine dithiocarbazate; methyl methoxybenzylidine; ligand complexes; mixed ligand; ligand

Journal Title: Journal of Saudi Chemical Society
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.