Abstract The Bangalore and Harohalli dyke swarms occur in the eastern part of the Dharwar craton. The older Bangalore dyke swarm is made up of dolerites, trending east-west, and the… Click to show full abstract
Abstract The Bangalore and Harohalli dyke swarms occur in the eastern part of the Dharwar craton. The older Bangalore dyke swarm is made up of dolerites, trending east-west, and the younger contains alkaline dykes that trend approximately north-south. The lamprophyres of the Harohalli dyke swarm occur in the Halaguru and Mysore industrial areas where they are exposed as fresh porphyritic – panidiomorphic dykes, containing crustal xenoliths, and showing chilled contacts with the country rock charnokites. They are chiefly composed of amphiboles which form well-developed phenocrysts. Clinopyroxenes are present in some of the dykes. Compositional zoning is observed in clinopyroxenes and amphiboles; their zoning patterns indicate that the magma experienced cryptic variations and that fractional crystallization was a dominant process in the evolution of the Harohalli Lamprophyres (HRL). The HRL are calc–alkaline with shoshonitic affinity and exhibit a K2O/Na2O ratio of ∼1. They show primitive (MORB-like) trace-element characters. LILE and LREE both show marginally enriched patterns; whereas HFSE and HREE show strongly depleted patterns. In the regional geologic sense, HRL dykes are characterised by two major influences; namely, (i) primary source region characteristics, which are geochemically more primitive, roughly falling within fields of primitive - MORB and enriched- MORB and (ii) the continental lithosphere. The data points for the HRL distinctly show their proximity to N-MORB and scatter towards the continental crust. Moreover, features like xenolith assimilation might influence the trace-element characteristics of the HRL dykes. Such magmas with mixed characters can be formed in a backarc basin environment. Geochemical proxies such as Ba/Nb vs Nb/Yb, Ba/Th vs Th/Nb, and the water content of magmas; which have been effectively used for discriminating backarc basin magmas worldwide, also indicate that the HRL magmas were generated in a backarc environment with inputs from a shallow subduction component and interaction with carbonatite melt. This paper therefore presents a new provenance for the generation of calc-alkaline lamprophyres, which were so far known to occur in orogenic belts.
               
Click one of the above tabs to view related content.