LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Stress dependence of microstructures in experimentally deformed calcite

Photo by khlebnikovayulia from unsplash

Abstract Optical measurements of microstructural features in experimentally deformed Carrara marble help define their dependence on stress. These features include dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge… Click to show full abstract

Abstract Optical measurements of microstructural features in experimentally deformed Carrara marble help define their dependence on stress. These features include dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge size (Lρ), and the maximum scale length for surface-energy driven grain-boundary migration (Lγ). Taken together with previously published data Dr defines a paleopiezometer over the range 15–291 MPa and temperature over the range 500–1000 °C, with a stress exponent of −1.09 (CI −1.27 to −0.95), showing no detectable dependence on temperature. Sg and Dr measured in the same samples are closely similar in size, suggesting that the new grains did not grow significantly after nucleation. Lρ and Lγ measured on each sample define a relationship to stress with an exponent of approximately −1.6, which helps define the boundary between a region of dominant strain-energy-driven grain-boundary migration at high stress, from a region of dominant surface-energy-driven grain-boundary migration at low stress.

Keywords: dependence; driven grain; experimentally deformed; size; stress; energy driven

Journal Title: Journal of Structural Geology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.