LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural variation within the Himalayan fold and thrust belt: A case study from the Kohat-Potwar Fold Thrust Belt of Pakistan

Photo from wikipedia

Abstract The Kohat and Potwar fold thrust belts (KP-FTB) in Pakistan exhibit structural variations over 250 km along strike within the Himalayan fold and thrust system. Our 3D deformation model shows… Click to show full abstract

Abstract The Kohat and Potwar fold thrust belts (KP-FTB) in Pakistan exhibit structural variations over 250 km along strike within the Himalayan fold and thrust system. Our 3D deformation model shows that Kohat surface structures evolved above an active roof thrust in Eocene evaporites. The ramp-forming duplexes in the Kohat were stacked and passively transported toward the foreland above new ramps, resulting in up to 5 km of thickening between the two decollements. Ramps from the Kohat extend into the Potwar as thrust tips of fault propagation folds. The basement slope changes from flat (β   1°) below the southern part, corresponding to the change in structural style and complexity of the KP-FTB. The Kalabagh Fault Zone, linking the two belts, is interpreted as a zone of complex dextral strike-slip rotational faulting. Salt expulsed from the hanging walls of normal faults and under synclines in the Kalabagh Fault Zone moved toward the footwall of normal faults, accumulated in the cores of anticlines, and formed lobe structures at the deformation front. The fundamental reasons for the variable structural styles are changes in decollement strength, basement slope, preexisting normal faulting, presence of a secondary decollement and spatially-variable salt mobility and accumulation.

Keywords: thrust; fold thrust; kohat potwar; thrust belt

Journal Title: Journal of Structural Geology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.