LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Central limit theorems and parameter estimation associated with a weighted-fractional Brownian motion

Photo from archive.org

Abstract Let B a , b be a weighted-fractional Brownian motion with indexes a and b satisfying | b | 1 ∧ ( 1 + a ) , a >… Click to show full abstract

Abstract Let B a , b be a weighted-fractional Brownian motion with indexes a and b satisfying | b | 1 ∧ ( 1 + a ) , a > − 1 which is a central Gaussian process such that E B t a , b B s a , b = 1 + b 2 ∫ 0 s ∧ t u a ( ( t − u ) b + ( s − u ) b ) d u . In this paper, we consider the asymptotic normality associated with processes ∫ 0 t B s + e a , b − B s a , b 2 − t a e 1 + b d s , t ∈ [ 0 , T ] , e > 0 . As an application we study the asymptotic normality of the estimator of parameter σ > 0 in stochastic process X t = σ B t a , b − β ∫ 0 t X s d s by using the generalized quadratic variation.

Keywords: weighted fractional; limit theorems; fractional brownian; central limit; brownian motion

Journal Title: Journal of Statistical Planning and Inference
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.