Abstract Considering full state constraints, this paper designs a boundary controller for a two-link rigid-flexible manipulator via Barrier Lyapunov Function. The dynamic model of the two-link rigid-flexible manipulator is described… Click to show full abstract
Abstract Considering full state constraints, this paper designs a boundary controller for a two-link rigid-flexible manipulator via Barrier Lyapunov Function. The dynamic model of the two-link rigid-flexible manipulator is described by coupled ordinary differential equations- partial differential equations (ODEs-PDEs). Based on the original model without neglecting the high-frequency modes, boundary controller is proposed to regulate the joint positions and eliminate the elastic vibration simultaneously. To ensure that the full state constraints which include position, speed and vibration constraints are not transgressed, a Barrier Lyapunov Function is employed in the proposed controller. The asymptotic stability of the closed-loop system is rigorously proved by the LaSalle's Invariance Principle. Simulations are given to verify the effectiveness of the proposed controller with state constraints.
               
Click one of the above tabs to view related content.