LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Using continuation analysis to identify shimmy-suppression devices for an aircraft main landing gear

Photo from wikipedia

Abstract This paper considers several passive shimmy-suppression devices for a dual-wheel main landing gear (MLG) and proposes a method of selecting the device parameter values for which no shimmy occurs.… Click to show full abstract

Abstract This paper considers several passive shimmy-suppression devices for a dual-wheel main landing gear (MLG) and proposes a method of selecting the device parameter values for which no shimmy occurs. Two of these devices include an inerter, a novel mechanical element with the property that the applied force is proportional to the relative acceleration between its terminals. A nonlinear mathematical model is developed to represent the MLG dynamics. A bifurcation study is then carried out to investigate the effects of the shimmy-suppression devices on the gear steady-state response. The aircraft forward speed and the device damping are chosen as the continuation parameters. A range of device parameter values that ensure the aircraft is free from shimmy instability for any forward speed within its operating region are identified. It is shown that the use of a proposed spring-damper configuration can result in a more robust device in terms of the device damping over that of a conventional shimmy damper. Two inerter-based shimmy-suppression devices are then considered and yield further benefits on expanding the zero-shimmy regions in the two-parameter bifurcation diagrams.

Keywords: shimmy suppression; main landing; landing gear; suppression devices

Journal Title: Journal of Sound and Vibration
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.