LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Damping effects of linear and nonlinear tuned mass dampers on nonlinear hinged-hinged beam

Photo from wikipedia

Abstract This study analyzes the vibration reduction of a tuned mass damper (TMD) applied to a hinged-hinged nonlinear Euler-Bernoulli beam. We compare the effects of linear and nonlinear tuned mass… Click to show full abstract

Abstract This study analyzes the vibration reduction of a tuned mass damper (TMD) applied to a hinged-hinged nonlinear Euler-Bernoulli beam. We compare the effects of linear and nonlinear tuned mass dampers (LTMD/NLTMD) and obtain results undiscovered in previous studies. We analyze the frequency responses (fixed points) of the system using the method of multiple scales (MOMS) and obtain analytical solutions for the NLTMD in the frequency and time domains using Dimensional Analysis and the Perturbation Method. The present study shows that when the damping coefficient ( λ ), TMD mass (mD), TMD initial displacement (A) and nonlinear spring constant ( β ) of the NLTMD fulfill a function relationship λ = 3 m D β A , the damping and nonlinear elastic effects cancel each other out, and the nonlinear damping frequency coincides with the linear natural frequency. With a fixed damping coefficient and an LTMD or NLTMD at a fixed position, optimal damping is achieved when the product of the TMD mass and spring constant are at fixed values. Finally, we use the Floquet transition matrix of the system and Floquet multipliers (F.M.) to create the basin of attraction (BOA) and analyze the stability of the system under aerodynamic forces.

Keywords: linear nonlinear; hinged hinged; tuned mass; mass; nonlinear tuned; effects linear

Journal Title: Journal of Sound and Vibration
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.