LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of extremum response surface method-based improved substructure component modal synthesis in mistuned turbine bladed disk

Photo from wikipedia

Abstract To improve the computational efficiency of vibration characteristics and reliability analysis for a detailed numerical model of the mistuned turbine bladed disk, a new methodology called extremum response surface… Click to show full abstract

Abstract To improve the computational efficiency of vibration characteristics and reliability analysis for a detailed numerical model of the mistuned turbine bladed disk, a new methodology called extremum response surface method-based improved substructural component modal synthesis (ERSM-ISCMS) is proposed by combining the ISCMS and ERSM. First, the degrees of freedom of the detailed finite element model for the numerical mistuned turbine bladed disk are decreased by ISCMS, which is called as reduced-order model. Compared with high fidelity finite element model, the time saving ratio and the computational accuracy of the first 40 order frequencies are, respectively, 36.37% and 99.99%~99.86% obtained by ISCMS under the same working environment, which can satisfy the engineering requirements. Then, the ERSM is applied to analyze the dynamic probability of the maximum vibration response for the numerical mistuned turbine bladed disk. The investigation indicates that the computational efficiency of ERSM is higher 38.92% than that of traditional RSM in the same computer and the same reduced-order model. Thus, the ERSM-ISCMS is a more effective method to investigate dynamic probabilistic analysis of the mistuned turbine bladed disk, it benefits for the complex structures and develops the theory method for the mechanical reliability design.

Keywords: turbine bladed; model; bladed disk; mistuned turbine

Journal Title: Journal of Sound and Vibration
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.