LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolution of dispersal under variable connectivity.

Photo from wikipedia

The pattern of connectivity between local populations or between microsites supporting individuals within a population is a poorly understood factor affecting the evolution of dispersal. We modify the well-known Hamilton-May… Click to show full abstract

The pattern of connectivity between local populations or between microsites supporting individuals within a population is a poorly understood factor affecting the evolution of dispersal. We modify the well-known Hamilton-May model of dispersal evolution to allow for variable connectivity between microsites. For simplicity, we assume that the microsites are either solitary, i.e., weakly connected through costly dispersal, or part of a well-connected cluster of sites with low-cost dispersal within the cluster. We use adaptive dynamics to investigate the evolution of dispersal, obtaining analytic results for monomorphic evolution and numerical results for the co-evolution of two dispersal strategies. A monomorphic population always evolves to a unique singular dispersal strategy, which may be an evolutionarily stable strategy or an evolutionary branching point. Evolutionary branching happens if the contrast between connectivities is sufficiently high and the solitary microsites are common. The dimorphic evolutionary singularity, when it exists, is always evolutionarily and convergence stable. The model exhibits both protected and unprotected dimorphisms of dispersal strategies, but the dimorphic singularity is always protected. Contrasting connectivities can thus maintain dispersal polymorphisms in temporally stable environments.

Keywords: evolution; dispersal variable; dispersal; evolution dispersal; variable connectivity

Journal Title: Journal of theoretical biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.