LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Molecular noise can minimize the collective sensitivity of a clonal heterogeneous cell population.

Photo by nci from unsplash

It is now widely accepted that molecular noise, rather than be always detrimental, introduces in many circumstances the required boost to reach fundamental cellular activities or strategies otherwise unattainable. In… Click to show full abstract

It is now widely accepted that molecular noise, rather than be always detrimental, introduces in many circumstances the required boost to reach fundamental cellular activities or strategies otherwise unattainable. In threshold-like genetic systems, molecular noise serves to generate heterogeneous responses in a clonal population, also in a tissue, due to cell-to-cell variability. Here, we derived a mathematical framework from which we could study in detail this effect. We focused on a minimal decision-making gene circuit implemented as a transcriptional positive-feedback loop. We evidenced that when the individual responses of each cell within the population are averaged, a sort of collective behavior, the resulting dose-response curve is linearized. In other words, the population is less sensitive than the individuals, which otherwise enhances the information transfer from signal to response. We found that the distance to the ideal linear response of the cell population is minimized for a particular noise level, and also characterized the interplay between intrinsic and extrinsic noise. Overall, our results highlight how cells could, by acting as a collective, entangle their genetic systems with their environments by adjusting the intracellular noise levels.

Keywords: noise minimize; molecular noise; cell population; noise; population

Journal Title: Journal of theoretical biology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.