LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In silico modelling of apoptosis induced by photodynamic therapy.

Photo by finnnyc from unsplash

Photodynamic therapy (PDT) is an emergent technique used for the treatment of several diseases. After PDT, cells die by necrosis, apoptosis or autophagy. Necrosis is produced immediately during photodynamic therapy… Click to show full abstract

Photodynamic therapy (PDT) is an emergent technique used for the treatment of several diseases. After PDT, cells die by necrosis, apoptosis or autophagy. Necrosis is produced immediately during photodynamic therapy by high concentration of reactive oxygen species, apoptosis and autophagy are triggered by mild or low doses of light and photosensitizer. In this work we model the cell response to low doses of PDT assuming a bi-dimensional matrix of interacting cells. For each cell of the matrix we simulate in detail, with the help of the Gillespie's algorithm, the two main chemical pathways leading to apoptosis. We unveil the role of both pathways in the cell death rate of the tumor, as well as the relevance of several molecules in the process. Our model suggests values of concentrations for several species of molecules to enhance the effectiveness of PDT.

Keywords: photodynamic therapy; silico modelling; apoptosis induced; modelling apoptosis; therapy

Journal Title: Journal of theoretical biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.