LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A model of DNA unwinding dynamics by the RecBCD complex and its regulation by Chi recognition.

Photo from wikipedia

The Escherichia coli RecBCD enzyme is a heterotrimeric helicase-nuclease complex responsible for processing of double-stranded DNA breaks for repair by homologous recombination. It is a highly processive, duplex unwinding and… Click to show full abstract

The Escherichia coli RecBCD enzyme is a heterotrimeric helicase-nuclease complex responsible for processing of double-stranded DNA breaks for repair by homologous recombination. It is a highly processive, duplex unwinding and degrading motor, with its activities being regulated by the octameric recombination hotspot, Chi, which is read as a single-stranded DNA sequence. Here, a model is presented for DNA unwinding by the RecBCD complex and its regulation by Chi recognition. With the model we study analytically the dynamics of DNA unwinding of both wild-type RecBCD and mutant RecBCDK177Q with the motor function of RecD being inactivated by mutagenesis, giving quantitative explanations of the available single-molecule experimental data. The peculiar features of RecBCD such as large variations of DNA unwinding speed of individual enzymes, sensitivity of unwinding speed of a RecBCD molecule on the change of environment, two translocase or helicase activities of RecBC and RecD, etc., are explained. Furthermore, predicted results are presented.

Keywords: chi; model; complex regulation; recbcd complex; regulation chi; dna unwinding

Journal Title: Journal of theoretical biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.