LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

iMethyl-STTNC: Identification of N6-methyladenosine sites by extending the idea of SAAC into Chou's PseAAC to formulate RNA sequences.

Photo from wikipedia

N6- methyladenosine (m6A) is a vital post-transcriptional modification, which adds another layer of epigenetic regulation at RNA level. It chemically modifies mRNA that effects protein expression. RNA sequence contains many… Click to show full abstract

N6- methyladenosine (m6A) is a vital post-transcriptional modification, which adds another layer of epigenetic regulation at RNA level. It chemically modifies mRNA that effects protein expression. RNA sequence contains many genetic code motifs (GAC). Among these codes, identification of methylated or not methylated GAC motif is highly indispensable. However, with a large number of RNA sequences generated in post-genomic era, it becomes a challenging task how to accurately and speedily characterize these sequences. In view of this, the concept of an intelligent is incorporated with a computational model that truly and fast reflects the motif of the desired classes. An intelligent computational model "iMethyl-STTNC" model is proposed for identification of methyladenosine sites in RNA. In the proposed study, four feature extraction techniques, such as; Pseudo-dinucleotide-composition, Pseudo-trinucleotide-composition, split-trinucleotide-composition, and split-tetra-nucleotides-composition (STTNC) are utilized for genuine numerical descriptors. Three different classification algorithms including probabilistic neural network, Support vector machine (SVM), and K-nearest neighbor are adopted for prediction. After examining the outcomes of prediction model on each feature spaces, SVM using STTNC feature space reported the highest accuracy of 69.84%, 91.84% on dataset1 and dataset2, respectively. The reported results show that our proposed predictor has achieved encouraging results compared to the present approaches, so far in the research. It is finally reckoned that our developed model might be beneficial for in-depth analysis of genomes and drug development.

Keywords: rna; methyladenosine; model; rna sequences; imethyl sttnc; identification

Journal Title: Journal of theoretical biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.