LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Two-strategy games with time constraints on regular graphs.

Photo from wikipedia

Evolutionary game theory is a powerful method for modelling animal conflicts. The original evolutionary game models were used to explain specific biological features of interest, such as the existence of… Click to show full abstract

Evolutionary game theory is a powerful method for modelling animal conflicts. The original evolutionary game models were used to explain specific biological features of interest, such as the existence of ritualised contests, and were necessarily simple models that ignored many properties of real populations, including the duration of events and spatial and related structural effects. Both of these areas have subsequently received much attention. Spatial and structural effects have been considered in evolutionary graph theory, and a significant body of literature has been built up to deal with situations where the population is not homogeneous. More recently a theory of time constraints has been developed to take account of the fact that different events can take different times, and that interaction times can explicitly depend upon selected strategies, which can, in turn, influence the distribution of different opponent types within the population. Here, for the first time, we build a model of time constraint games which explicitly considers a spatial population, by considering a population evolving on an underlying graph, using two graph dynamics, birth-death and death-birth. We consider one short time scale along which frequencies of pairs and singles change as individuals interact with their neighbours, and another, evolutionary time scale, along which frequencies of strategies change in the population. We show that for graphs with large degree, both dynamics reproduce recent results from well-mixed time constraint models, including two ESSs being common in Hawk-Dove and Prisoner's Dilemma games, but for low degree there can be marked differences. For birth-death processes the effect of the graph degree is small, whereas for death-birth dynamics there is a large effect. The general prediction for both Hawk-Dove and Prisoner's dilemma games is that as the graph degree decreases, i.e., as the number of neighbours decreases, mixed ESS do appear. In particular, for the Prisoner's dilemma game this means that cooperation is easier to establish in situations where individuals have low number of neighbours. We thus see that solutions depend non-trivially on the combination of graph degree, dynamics and game.

Keywords: game; death; time constraints; time; graph; population

Journal Title: Journal of theoretical biology
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.