LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Numerical Bifurcation Analysis and Pattern Formation in a Minimal Reaction-Diffusion Model for Vegetation.

Photo from wikipedia

Model-aided understanding of the mechanism of vegetation patterns and desertification is one of the burning issues in the management of sustainable ecosystems. A pioneering model of vegetation patterns was proposed… Click to show full abstract

Model-aided understanding of the mechanism of vegetation patterns and desertification is one of the burning issues in the management of sustainable ecosystems. A pioneering model of vegetation patterns was proposed by C. A. Klausmeier in 1999 Klausmeier, 1999 that involves a downhill flow of water. In this paper, we study the diffusive Klausmeier model that can describe the flow of water in flat terrain incorporating a diffusive flow of water. It consists of a two-component reaction-diffusion system for water and plant biomass. The paper presents a numerical bifurcation analysis of stationary solutions of the diffusive Klausmeier model extensively. We numerically investigate the occurrence of diffusion-driven instability and how this depends on the parameters of the model. Finally, the model predicts some field observed vegetation patterns in a semiarid environment, e.g. spot, stripe (labyrinth), and gap patterns in the transitions from bare soil at low precipitation to homogeneous vegetation at high precipitation. Furthermore, we introduce a two-component reaction-diffusion model considering a bilinear interaction of plant and water instead of their cubic interaction. It is inspected that no diffusion-driven instability occurs as if vegetation patterns can be generated. This confirms that the diffusive Klausmeier model is the minimal reaction-diffusion model for the occurrence of vegetation patterns from the viewpoint of a two-component reaction-diffusion system.

Keywords: vegetation patterns; vegetation; model; reaction diffusion

Journal Title: Journal of theoretical biology
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.