LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Larval rearing of zebrafish at suboptimal temperatures.

Photo from archive.org

Temperature-sensitive mutants have been widely utilized in single-cell and invertebrate model systems, particularly to study the function of essential genes. Few temperature-sensitive mutants have been identified in zebrafish, likely due… Click to show full abstract

Temperature-sensitive mutants have been widely utilized in single-cell and invertebrate model systems, particularly to study the function of essential genes. Few temperature-sensitive mutants have been identified in zebrafish, likely due to the difficulty of raising zebrafish at low temperatures. We describe a novel rearing protocol that allows rapid growth of larval and juvenile zebrafish at 23 °C compared to previous data in the literature. Embryos collected from four breeding pairs were maintained at 28.5 ± 0.5 °C until 5 days post-fertilization (dpf) - the onset of exogenous feeding. Larvae were then divided to six tanks and three tanks were cooled to 23 ± 0.2 °C. Fish were fed a live diet (marine rotifers Brachionus plicatilis and Artemia nauplii) and maintained under a set of environmental parameters shown to increase growth rate: continuous light, low salinity (3ppt), and algal turbidity. Mean total length and weight of fish at 21dpf were 12.7 ± 0.3 mm and 20.5 ± 1.5 mg for the 23 °C treatment and 18.5 ± 0.4 mm and 67.3 ± 3.4 mg for the 28.5 °C control. By 35 dpf, the fish raised at 23 °C had reached a mean length and weight of 18.9 ± 0.7 mm and 76.4 ± 6.7 mg, approximately the size control fish reached at 21 dpf. At 35 dpf, water temperature was raised to 28 °C and fish were reared to maturity (75 dpf) under standard conditions (freshwater, 13 L:11D photoperiod, dry diet, no added algal turbidity). Sex ratio and fertility were assessed and compared between temperature groups. There were no significant differences in sex ratio, fertilization rate, embryo viability at 1 dpf, clutch size, or relative fecundity. This rearing protocol will allow for efficient utilization of temperature-sensitive mutations in the zebrafish model system.

Keywords: temperature; rearing zebrafish; zebrafish suboptimal; suboptimal temperatures; temperature sensitive; larval rearing

Journal Title: Journal of thermal biology
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.