LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Heat preconditioning and aspirin treatment attenuate hepatic carbohydrate-related disturbances in diabetic rats.

Photo from wikipedia

Heat preconditioning (HP) is a powerful adaptive and protective phenomenon and induces moderation of diabetic alterations in glycogen metabolism of rats. Aspirin (acetylsalicylic acid, ASA), as a multifunctional drug has… Click to show full abstract

Heat preconditioning (HP) is a powerful adaptive and protective phenomenon and induces moderation of diabetic alterations in glycogen metabolism of rats. Aspirin (acetylsalicylic acid, ASA), as a multifunctional drug has also been reported to exert hypoglycemic effects in the treatment of diabetes. We estimated the effect of HP (45 min/41 ± 0.5 °C/24 h recovery) and single dose aspirin (100 mg/kg b.w./i.p) treatment over carbohydrate-related enzymes and substrates in a time-dependent (2, 7 and 14 days) manner of duration of diabetes in the liver of rats. Heat preconditioning resulted in lower liver glucose concentration, but higher HK activity and lower G6P-ase; very evident and significantly higher glycogen content and GPho-ase activity, as well as very evident and significantly lower F1,6BP-ase and higher PFK activity compared to control diabetic animals. Aspirin pretreatment of HP-diabetic animals is manifested with significantly lower blood and liver glucose, higher G6P concentration, lower G6P-ase and HK activity as well as higher Glk content and GPho-ase activity, compared both to diabetic and HP-diabetic animals. In conclusion, both HP and aspirin, as physiological and pharmacological inductors of HSP70, respectively, attenuate the carbohydrate-related disturbances in diabetic rats, with almost tendency to normalisation to the control values for most of the estimated parameters.

Keywords: heat preconditioning; treatment; carbohydrate related; ase; activity

Journal Title: Journal of thermal biology
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.