LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Too hot to handle? Behavioural plasticity during incubation in a small, Australian passerine.

Photo from wikipedia

Global warming and intensifying extreme heat events may affect avian reproductive success and costs, particularly in hot, arid environments. It is unclear how breeding birds alter their behaviour in response… Click to show full abstract

Global warming and intensifying extreme heat events may affect avian reproductive success and costs, particularly in hot, arid environments. It is unclear how breeding birds alter their behaviour in response to rapid climate change, and whether such plasticity will be sufficient to offset rising temperatures. We examine whether a small, open-cup nesting, passerine - the Jacky Winter Microeca fascinans - in semi-arid Australia, exhibits similar levels of behavioural plasticity when incubating under high temperatures as low, and how heat impacts upon parental effort, body mass change and reproductive success. At high temperatures, female effort increased. Females doubled nest attendance between 28 °C and 40 °C, switching from incubating to shading eggs at approx. 30 °C. Egg-shading females panted to avoid hyperthermia. Panting increased with temperature and sun exposure. Male breeding effort was linked to temperature extremes. In cold conditions, males provisioned their mates heavily, buffering females from additional energetic costs, and males suffered a loss of body mass. In extreme heat, males helped shade eggs (although they never incubated). The likelihood of male egg-shading increased with temperature, but level of contribution was positively related to sun exposure. Hatching success declined with air temperatures >35 °C. Egg mortality reached 100 at air temperatures >42.5 °C. Parents continued to attend unviable eggs (for up to two weeks), suggesting egg-loss from heat exposure is a recent phenomenon. Although pairs exhibited considerable behavioural plasticity - including positioning nests to maximize afternoon shade - this was insufficient to counter extreme temperatures. In 2019, one hot day (45 °C) effectively terminated reproduction two months early, and was associated with a 50% decrease in reproductive success. The increasing frequency, intensity and earlier arrival of extreme heat events is likely to pose a major threat to avifauna populations in hot, arid environments, due to increased parental costs, reduced reproductive success and direct mortality.

Keywords: heat; behavioural plasticity; plasticity; reproductive success; passerine

Journal Title: Journal of thermal biology
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.