LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Directional droplet-actuation and fluid-resistance reduction performance on the bio-inspired shark-fin-like superhydrophobic surface

Photo from wikipedia

Abstract The tunable of fluid transport on solid surface plays a significant role for self-cleaning and drug-saving fields. It effectively prevents the corrosion and declines the fluid resistance induced by… Click to show full abstract

Abstract The tunable of fluid transport on solid surface plays a significant role for self-cleaning and drug-saving fields. It effectively prevents the corrosion and declines the fluid resistance induced by the rushing water and accumulated microorganisms on the hull surface. To more effectively combat these problems, herein, we provide a new strategy, a superhydrophobic shark-fin-like bionic surface. Anisotropic characteristic of this novel structure lead to the different de-pinning force in the opposite direction for the water droplet. The superhydrophobicity of the shark-fin-like embossment is from the "air layer" formed by the ZnO nano-structure. This novel composited surface can effectively realize the directional droplet-actuation and fluid-resistance reduction performance. Droplets and fluid will move more easily along the special direction on the shark-fin-like surface. Moreover, the substrate material is flexible and easy to mass production. We believe that this work will give a significant scientific insight to self-cleaning surface and hull design.

Keywords: fluid resistance; shark fin; fin like; surface

Journal Title: Journal of the Taiwan Institute of Chemical Engineers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.