LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Removal of 17β-estradiol from aqueous solution by graphene oxide supported activated magnetic biochar: Adsorption behavior and mechanism

Photo from wikipedia

Abstract A novel graphene oxide supported activated magnetic biochar (GO-AMBC) is fabricated for 17β-estradiol (E2) removal from aqueous solution by grafting graphene oxide (GO) and magnetite nanoparticles onto the activated… Click to show full abstract

Abstract A novel graphene oxide supported activated magnetic biochar (GO-AMBC) is fabricated for 17β-estradiol (E2) removal from aqueous solution by grafting graphene oxide (GO) and magnetite nanoparticles onto the activated biochar surface with a one-step activation, magnetization, and carbonization method. GO-AMBC is characterized using SEM, TEM, FTIR, VSM, XRD, XPS, BET surface area and zeta potential measurements. The characterization results show that GO-AMBC possesses a larger surface area and more oxygen-containing functional groups than the unmodified biochar. When the E2 initial concentration is 6 mg/L, its adsorption capacity by GO-AMBC (46.22 mg/g) is more than two times higher than that of pristine biochar (23.09 mg/g) at 298 K and pH = 7.0. Adsorption results show that E2 uptake follows by pseudo-second-order kinetic and Freundlich isothermal models. Thermodynamic analysis indicates that the adsorption process is spontaneous and exothermic. E2 removal by GO-AMBC is significantly affected by the actual water conditions, including solution pH, ionic strength, and organic acids. Among them, organic acids have obvious inhibition effect on E2 removal, and the inhibition effect by oxalate is stronger than that of benzoate. The adsorption mechanism of E2 on GO-AMBC is mainly controlled by hydrogen bonds, electrostatic and π-π interactions. The experimental results of this study and comparative analysis with other adsorbents suggest that GO-AMBC is an economical, efficient and recyclable adsorbent and has great potential for E2 removal from contaminated water.

Keywords: oxide supported; removal; graphene oxide; adsorption; biochar; solution

Journal Title: Journal of the Taiwan Institute of Chemical Engineers
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.