LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Cetyltrimethylammonium bromide functionalized silica nanoparticles (MSN) synthesis using a combined sol-gel and adsorption steps with enhanced adsorption performance of oxytetracycline in aqueous solution

Photo from wikipedia

Abstract The cetyltrimethylammonium bromide (CTAB)-functionalized silica nanoparticles (MSN) were prepared using a combined sol-gel and adsorption steps. The nitrogen adsorption-desorption surface analysis shows the MSN has a lower surface area… Click to show full abstract

Abstract The cetyltrimethylammonium bromide (CTAB)-functionalized silica nanoparticles (MSN) were prepared using a combined sol-gel and adsorption steps. The nitrogen adsorption-desorption surface analysis shows the MSN has a lower surface area than the unmodified (or free) silica nanoparticles (FSN). The energy dispersive X-ray (EDX) and Fourier transform infrared (FTIR) analysis confirmed the presence of CTAB in MSN with maximum CTAB coverage of (0.74 ± 0.04) mmol/g. The maximum adsorption capacity of oxytetracycline (OTC) onto MSN performed in the batch adsorption process, Qe.max is 449.89 µmol g−1, which is higher than FSN (57.06 µmol g−1). The adsorption depends on pH value, OTC concentration, temperature, and contact time. The thermodynamic parameters indicate the process as exothermic in nature and spontaneous. The isotherm data fits well with the Redlich-Peterson model, while the pseudo-second order (PSO) kinetic model is found to be suitable to describe the kinetic data with the film diffusion as the rate-limiting step. The electrostatic, hydrogen bonding and hydrophobic interactions are mainly responsible for the OTC adsorption onto the synthesized adsorbents. The reusability studies found that the adsorbent could be recycled without drastic adsorption capacity reduction. The successful decoration of the CTAB onto the surface of the silica nanoparticles provides an effective method in the development of promising adsorbents for antibiotic removal from wastewater.

Keywords: cetyltrimethylammonium bromide; adsorption; functionalized silica; silica nanoparticles; nanoparticles msn; using combined

Journal Title: Journal of The Taiwan Institute of Chemical Engineers
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.