LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhanced performance of high temperature polymer electrolyte membrane fuel cell using a novel dual catalyst layer structured cathode

Photo from wikipedia

Abstract Background High cost is a main barrier of commercialization for high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). Thus, enhancing the efficiency of platinum (Pt) utilization and improving the… Click to show full abstract

Abstract Background High cost is a main barrier of commercialization for high temperature polymer electrolyte membrane fuel cell (HT-PEMFC). Thus, enhancing the efficiency of platinum (Pt) utilization and improving the performance of HT-PEMFC is expected to promote its commercialization. Methods A novel cathode with dual catalyst layer (DCL) structure is designed for enhancing the performance of HT-PEMFC. The catalyst is mainly distributed in outer CL (next to membrane) to concentrate Pt, while a small amount of catalyst is used in inner CL (close to gas diffusion layer). High-Pt-content catalysts (40, 50 wt% Pt/C) and low-Pt-content catalysts (10, 20 wt% Pt/C) are utilized in outer and inner CLs, respectively, to maintain the same thicknesses of two CLs. Significant findings 2/4-DCL gas diffusion electrode (GDE) with an outer CL consists of 40 wt% Pt/C and an inner CL consists of 20 wt% Pt/C shows the highest performance among prepared DCL structured GDEs, which also shows a significantly higher performance than the conventional single CL structured GDEs due to the novel structure of DCL. Finally, a good durability of 2/4-DCL GDE indicates the feasibility in practical HT-PEMFC.

Keywords: temperature polymer; layer; high temperature; performance; catalyst; membrane

Journal Title: Journal of the Taiwan Institute of Chemical Engineers
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.