LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development and optimization of a direct plaque assay for trypsin-dependent human metapneumovirus strains.

Photo from wikipedia

Human metapneumovirus (HMPV) is a non-segmented, negative strand RNA virus belonging to the family Pneumoviridae, previously a subfamily of Paramyxoviridae. It is a leading cause of lower respiratory tract infection… Click to show full abstract

Human metapneumovirus (HMPV) is a non-segmented, negative strand RNA virus belonging to the family Pneumoviridae, previously a subfamily of Paramyxoviridae. It is a leading cause of lower respiratory tract infection in infants, children, and adults with underlying medical conditions. HMPV grows poorly in cell culture and requires trypsin to cleave and mature the virus particles, which adds to the challenge of HMPV research. Currently, an indirect immuno-staining assay is commonly used to titrate HMPV, which is time-consuming and costly. In order to simplify virus quantification for HMPV, a direct plaque assay was developed. By optimizing trypsin concentration and other supplements in the agarose overlay, it was found that HMPV strains from all four subgroups formed clear and countable plaques 5-7 days post-infection. Animal tissue homogenate can also be directly titrated with this assay. Compared with the traditional assay, the direct plaque assay yields similar titer result, but saves time and eliminates the use of antibodies. Potentially, it can also be applied to plaque purification for HMPV clinical isolates. The direct plaque assay will be a valuable tool in HMPV research.

Keywords: hmpv; plaque assay; direct plaque; human metapneumovirus

Journal Title: Journal of virological methods
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.