LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fluorescence resonance energy transfer combined with asymmetric PCR for broad and sensitive detection of porcine reproductive and respiratory syndrome virus 2.

Photo by fusion_medical_animation from unsplash

With its ever-increasing viral genetic diversity, accurate diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infection is indispensable for PRRSV control. Here, a sensitive graphene oxide (GO)-based FRET method… Click to show full abstract

With its ever-increasing viral genetic diversity, accurate diagnosis of porcine reproductive and respiratory syndrome virus (PRRSV) infection is indispensable for PRRSV control. Here, a sensitive graphene oxide (GO)-based FRET method was developed to detect PRRSV-2 based on the ability of GO to quench fluorophore by fluorescence resonance energy transfer (FRET). Using primers and a fluorophore-labeled ssDNA probe targeting a conserved region between the PRRSV M gene and 3'UTR, asymmetric PCR specifically amplified viral ssDNA that could anneal with probe to generate dsDNA only in the presence of virus. Upon exonuclease III treatment to release the probe fluorophore, which degrades dsDNA with blunt ends or recessed 3´-termini, the ssDNA annealed with other probe to generate enhanced fluorescence. This GO-based FRET assay specifically detected both classical and highly pathogenic PRRSV, with analytical sensitivity approaching 10 copies/μL, similar to that of real-time PCR but greater than that of conventional reverse transcription PCR (RT-PCR). Consistent with real-time RT-PCR detection, the assay developed here exhibited high diagnostic sensitivity for virus detection of sera from experimentally and naturally infected pigs. Thus, this novel GO-based FRET assay combined with asymmetric PCR detection is sensitive and specific and will be valuable for future PRRSV diagnosis.

Keywords: detection; fluorescence; pcr; porcine reproductive; virus; asymmetric pcr

Journal Title: Journal of virological methods
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.