LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A tidal-influenced hydrothermal system temporarily cooled by a tropical storm

Photo from wikipedia

Abstract The Lutao hydrothermal field is an intertidal arc-volcanic system located offshore southeast Taiwan, hosting a Zhudanqu (ZDQ) vent and a Huwaichi (HWC) spring with strongly contrasting fluid chemistry. Low… Click to show full abstract

Abstract The Lutao hydrothermal field is an intertidal arc-volcanic system located offshore southeast Taiwan, hosting a Zhudanqu (ZDQ) vent and a Huwaichi (HWC) spring with strongly contrasting fluid chemistry. Low Mg, moderately enriched Cl, and H+ with respect to seawater indicate that the ZDQ endmember was derived from the brine phase that was formed during low-degree subcritical phase separation. In contrast, the endmember for the HWC vent fluids is related to the vapor phase. Temperature and pressure of the phase separation were estimated as ~150 °C and ~7 bar, respectively. The water/rock ratio was roughly calculated as about 2. The Lutao hydrothermal system was slightly affected by semi-diurnal tides, by some combination of tidal loading and tidal currents. The time delay between tides and the response of the hydrothermal system was about 3 h. While freshwater was almost absent in the HWC vent fluids at normal conditions, the typhoon “Fung-wong” on Sep 21st, 2014, led to intrusions of freshwater into the vent fluids with a percentage of ~16%. Both the ZDQ and the HWC endmember compositions showed some changes after the typhoon event, suggesting a cooling of the reaction zone. After the typhoon passed by, the hydrothermal system began to recover, evidenced by increasing percentages of the HWC endmember and decreasing freshwater contributions. The flux of the HWC endmember was estimated as 460–560 L h−1 based on these observations. This study, for the first time, reports a shallow-depth tidal-influenced hydrothermal system that was temporarily cooled by a tropical storm.

Keywords: system; hydrothermal system; temporarily cooled; system temporarily; tidal influenced; influenced hydrothermal

Journal Title: Journal of Volcanology and Geothermal Research
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.