LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aerodynamic and aeroelastic characteristics of flexible wind turbine blades under periodic unsteady inflows

Photo by schwiet from unsplash

Abstract The aeroelastic coupling effect is playing an increasingly important role in the aerodynamic and aeroelastic characteristics of wind turbine blades owing to the increasing size of modern wind turbines.… Click to show full abstract

Abstract The aeroelastic coupling effect is playing an increasingly important role in the aerodynamic and aeroelastic characteristics of wind turbine blades owing to the increasing size of modern wind turbines. Concurrently, periodic unsteady inflows, including the wind shear (WS), tower shadow (TS), and yawed inflow, further amplify the impacts of aeroelastic coupling. In this study, an aeroelastic model based on the geometrically exact beam theory and blade element momentum method is established. The aeroelastic coupling model is verified based on several previous studies. Taking the NREL 5WM flexible wind turbine blade as an example, the aerodynamic and aeroelastic characteristics under periodic unsteady inflows are investigated. The results show that the WS causes remarkable fluctuations of the flap deflection and yaw moment. The TS effect introduces dramatic changes into the tilt moment, thrust force, and output power when the blade passes by the tower. The yawed inflow leads to a significant reduction in both the output power and thrust force. Compared with other unsteady inflows, the gravity effect on the output power and thrust force are negligible. The response under the combined effect is a summation of the results considering each single influencing factor and is dominated by the major influencing factors.

Keywords: aeroelastic characteristics; periodic unsteady; wind; aerodynamic aeroelastic; wind turbine; unsteady inflows

Journal Title: Journal of Wind Engineering and Industrial Aerodynamics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.