LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of heat treatment of TiO2 nanofibers on the morphological structure of PVDF nanocomposite membrane under UV irradiation

Photo from wikipedia

Abstract Nowadays, photocatalytic oxidation has been pledged as a valuable process for air and water purification due to its capability in degrading organic pollutants. In this study, polyvinylidene fluoride (PVDF)… Click to show full abstract

Abstract Nowadays, photocatalytic oxidation has been pledged as a valuable process for air and water purification due to its capability in degrading organic pollutants. In this study, polyvinylidene fluoride (PVDF) nanocomposite membrane consisted of electrospun titanium dioxide nanofibers (PVDF/TNF) was prepared by hot pressing TNF onto PVDF flat sheet membrane. Titanium dioxide nanofibers (TNF) were successfully fabricated through electrospinning technique, in which electrospun from a precursor solution consisted of polyvinylpyrrolidone (PVP)/titanium tetraisopropoxide (TTIP), ethanol and acetic acid. They were then heat-treated under different calcination temperatures ranging from 400 to 600 °C. The morphological properties of TNF were characterized via scanning of electron microscope (SEM) and X-ray diffractometer (XRD). From the results collected, it is shown that the heat-treated TNF were consisted of anatase and rutile phases, whereas the un-treated TNF only possessed amorphous phase as analysed by XRD analysis. As a matter of fact, TNF-500 displayed satisfactory morphological structure, along with fiber diameter and crystalline structure compared to other TNF, thus TNF-500 was chosen for further testing. In addition, selected TNF have successfully deposited onto PVDF membrane as there is no visible lift-off. By introducing TNF into PVDF membrane matrix, said course of action resulted in a tremendously enhanced BPA photodegradation up to 85.88%. Even though the calcination process implemented on TNF has been reduced to about 4% in photocatalytic activity, further optimisation study on the loading of TNF-500 in PVDF membrane matrix could highlight favourable features of calcined TNF-500 for BPA degradation reaction.

Keywords: nanocomposite membrane; pvdf; structure; heat; membrane; pvdf nanocomposite

Journal Title: Journal of water process engineering
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.