LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ubiquitin C-Terminal Hydrolase L1 is required for regulated protein degradation through the ubiquitin proteasome system in kidney.

Photo from wikipedia

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a major deubiquitinating enzyme of the nervous system and associated with the development of neurodegenerative diseases. We have previously shown that UCH-L1 is found… Click to show full abstract

Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a major deubiquitinating enzyme of the nervous system and associated with the development of neurodegenerative diseases. We have previously shown that UCH-L1 is found in tubular and parietal cells of the kidney and is expressed de novo in injured podocytes. Since the role of UCH-L1 in the kidney is unknown we generated mice with a constitutive UCH-L1-deficiency to determine its role in renal health and disease. UCH-L1-deficient mice developed proteinuria, without gross changes in glomerular morphology. Tubular cells, endothelial cells, and podocytes showed signs of stress with an accumulation of oxidative-modified and polyubiquitinated proteins. Mechanistically, abnormal protein accumulation resulted from an altered proteasome abundance leading to decreased proteasomal activity, a finding exaggerated after induction of anti-podocyte nephritis. UCH-L1-deficient mice exhibited an exacerbated course of disease with increased tubulointerstitial and glomerular damage, acute renal failure, and death, the latter most likely a result of general neurologic impairment. Thus, UCH-L1 is required for regulated protein degradation in the kidney by controlling proteasome abundance. Altered proteasome abundance renders renal cells, particularly podocytes and endothelial cells, susceptible to injury.

Keywords: regulated protein; ubiquitin terminal; required regulated; protein degradation; terminal hydrolase; kidney

Journal Title: Kidney international
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.