Abstract We derive a closed formula for the determinant of the Hankel matrix whose entries are given by sums of negative powers of the zeros of the regular Coulomb wave… Click to show full abstract
Abstract We derive a closed formula for the determinant of the Hankel matrix whose entries are given by sums of negative powers of the zeros of the regular Coulomb wave function. This new identity applied together with results of Grommer and Chebotarev allows us to prove a Hurwitz-type theorem about the zeros of the regular Coulomb wave function. As a particular case, we obtain a new proof of the classical Hurwitz's theorem from the theory of Bessel functions that is based on algebraic arguments. In addition, several Hankel determinants with entries given by the Rayleigh function and Bernoulli numbers are also evaluated.
               
Click one of the above tabs to view related content.