LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distance matrices on the H-join of graphs: A general result and applications

Photo from wikipedia

Abstract Given a graph H with vertices 1 , … , s and a set of pairwise vertex disjoint graphs G 1 , … , G s , the vertex… Click to show full abstract

Abstract Given a graph H with vertices 1 , … , s and a set of pairwise vertex disjoint graphs G 1 , … , G s , the vertex i of H is assigned to G i . Let G be the graph obtained from the graphs G 1 , … , G s and the edges connecting each vertex of G i with all the vertices of G j for all edge ij of H. The graph G is called the H-join of G 1 , … , G s . Let M ( G ) be a matrix on a graph G. A general result on the eigenvalues of M ( G ) , when the all ones vector is an eigenvector of M ( G i ) for i = 1 , 2 , … , s , is given. This result is applied to obtain the distance eigenvalues, the distance Laplacian eigenvalues and as well as the distance signless Laplacian eigenvalues of G when G 1 , … , G s are regular graphs. Finally, we introduce the notions of the distance incidence energy and distance Laplacian-energy like of a graph and we derive sharp lower bounds on these two distance energies among all the connected graphs of prescribed order in terms of the vertex connectivity. The graphs for which those bounds are attained are characterized.

Keywords: matrices join; distance matrices; applications distance; distance; general result; result

Journal Title: Linear Algebra and its Applications
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.