LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Exosome-derived miR-let-7c promotes angiogenesis in multiple myeloma by polarizing M2 macrophages in the bone marrow microenvironment.

Photo from wikipedia

Angiogenesis is an integral part of the multiple myeloma (MM) microenvironment, and affects tumorigenesis, progression, invasion, and metastasis. Exosomes are essential for cell-cell communication and help in regulating the bone… Click to show full abstract

Angiogenesis is an integral part of the multiple myeloma (MM) microenvironment, and affects tumorigenesis, progression, invasion, and metastasis. Exosomes are essential for cell-cell communication and help in regulating the bone marrow microenvironment. Herein, we investigated macrophage polarization and angiogenesis in MM in vitro via exosome-derived miR-let-7c. We observed that exosomal miR-let-7c secreted by mesenchymal stem cells promoted M2 macrophage polarization, thereby enhancing angiogenesis in the bone marrow microenvironment. Suppressing miR-let-7c expression significantly inhibited vascular endothelial cell function in myeloma. Thus, exosomal miR-let-7c may be a reliable biomarker for early prediction of tumor progression and a promising therapeutic target for MM.

Keywords: myeloma; mir let; let; marrow microenvironment; bone marrow

Journal Title: Leukemia research
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.