LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evidence that PKCα inhibition in Dalton's Lymphoma cells augments cell cycle arrest and mitochondrial-dependent apoptosis.

Photo from wikipedia

Protein kinase Cα (PKCα), belonging to ser/thr protein kinase, perform various biological functions. Overexpression of PKCα has been observed in multiple human malignancies including lymphoma. However, the molecular pathogenesis and… Click to show full abstract

Protein kinase Cα (PKCα), belonging to ser/thr protein kinase, perform various biological functions. Overexpression of PKCα has been observed in multiple human malignancies including lymphoma. However, the molecular pathogenesis and involvement of PKCα in Non-Hodgkin lymphoma (NHL) are not clearly understood. Hence, deciphering the role of PKCα in NHL management may provide a better therapeutic option. In the present study, we used selective pharmacological inhibitors Gö6976 and Ro320432 that potentially inhibit PKCα-mediated signaling in DL cells, resulting in the inhibition of cell growth and mitochondrial-dependent apoptosis. PKCα inhibition by these inhibitors also displays cell cycle arrest at the G1 phase and causes growth retardation of DL cells. Our results extended the mechanism of PKCα in NHL, and provided potential implications for its therapy.

Keywords: dependent apoptosis; mitochondrial dependent; lymphoma; pkc inhibition; pkc

Journal Title: Leukemia research
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.