LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

FGF-2 targets sclerostin in bone and myostatin in skeletal muscle to mitigate the deleterious effects of glucocorticoid on musculoskeletal degradation.

Photo by nixcreative from unsplash

AIM Myokines are associated with regulation of bone and muscle mass. However, limited information is available regarding the impact of myokines on glucocorticoid (GC) mediated adverse effects on the musculoskeletal… Click to show full abstract

AIM Myokines are associated with regulation of bone and muscle mass. However, limited information is available regarding the impact of myokines on glucocorticoid (GC) mediated adverse effects on the musculoskeletal system. This study investigates the role of myokine fibroblast growth factor-2 (FGF-2) in regulating GC-induced deleterious effects on bone and skeletal muscle. METHODS Primary osteoblast cells and C2C12 myoblast cell line were treated with FGF-2 and then exposed to dexamethasone (GC). FGF-2 mediated attenuation of the inhibitory effect of GC on osteoblast and myoblast differentiation and muscle atrophy was assessed through quantitative PCR and western blot analysis. Further, FGF-2 was administered subcutaneously to dexamethasone treated mice to collect bone and skeletal muscle tissue for in vivo analysis of bone microarchitecture, mechanical strength, histomorphometry and for histological alterations in treated tissue samples. KEY FINDINGS FGF-2 abrogated the dexamethasone induced inhibitory effect on osteoblast differentiation by modulating BMP-2 pathway and inhibiting Wnt antagonist sclerostin. Further, dexamethasone induced atrophy in C2C12 cells was mitigated by FGF-2 as evident from down regulation of atrogenes expression. FGF-2 prevented GC-induced impairment of mineral density, biomechanical strength, trabecular bone volume, cortical thickness and bone formation rate in mice. Additionally, skeletal muscle tissue from GC treated mice displayed weak myostatin immunostaining and reduced expression of atrogenes following FGF-2 treatment. SIGNIFICANCE FGF-2 mitigated GC induced effects through inhibition of sclerostin and myostatin expression in bone and muscle respectively. Taken together, this study exhibited the role of exogenous FGF-2 in sustaining osteoblastogenesis and inhibiting muscle atrophy in presence of glucocorticoid.

Keywords: fgf; myostatin; skeletal muscle; muscle; bone; deleterious effects

Journal Title: Life sciences
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.